Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Sempre attivi
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Nessun cookie da visualizzare.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Nessun cookie da visualizzare.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Nessun cookie da visualizzare.

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

Nessun cookie da visualizzare.

Dipartimento di
Ingegneria Civile e Ambientale

Caricamento Eventi

« Tutti gli Eventi

  • Questo evento è passato.

PhDTalks | A fracture mechanics approach for fatigue life prediction of Ni-Ti peripheral stents

31 Ottobre 2023 @ 17:15 - 18:30

Il prossimo appuntamento con la serie di incontri PhDTalks si terrà Martedì 31 ottobre nell’aula Fassò (Edificio 4A), dalle 17:15 alle 18:30 CET.

PhDTalks è una serie di seminari e discussioni tra dottorandi. Gli eventi hanno lo scopo di fornire un luogo dove creare un network tra dottorandi ed entrare in contatto con i molti progetti sviluppati nel nostro dipartimento.

La speaker Alma Brambilla condurrà un seminario dal titolo A fracture mechanics approach for fatigue life prediction of Ni-Ti peripheral stents. 

Al termine dell’evento sarà disponibile un piccolo rinfresco finanziato dal dipartimento.

Sarà possibile seguire la conferenza anche online al seguente link.

Abstract 

Nickel-Titanium (Ni-Ti) stents are the gold standard in the mini-invasive treatment of atherosclerotic diseases affecting peripheral arteries. The fatigue fracture of these devices under in vivo cyclic loads constitutes an open issue of major concern given the severe associated drawbacks such as re-occlusion of the artery. However, the non-linear material response and the reduced dimensions of stent struts increase the complexity of their fatigue assessment, requiring ad hoc and well-defined methods. Despite many phenomenological approaches have been proposed, open questions remain and more efforts are still required to understand and predict Ni-Ti thin struts failure under fatigue loads. This work aims at investigating the application of fracture mechanics principles for stent fatigue life assessment, accounting for the propagation of pre-existing manufacturing defects. To this purpose, crack propagation tests were performed on ad hoc samples, characterized by a microstructure comparable to that of stents, to gain the material crack growth rate. A proof-of-concept study was conducted at first, performing an experimental fatigue campaign on multi-wires samples having the same dimension and material properties of stents. Fracture surfaces were inspected through a scanning electron microscope highlighting defect size at the initiation site of fracture. A crack propagation algorithm was herein calibrated, introducing the non-linear fracture mechanics energetic parameter cyclic J-integral and integrating the crack growth law from the initial defect size observed on the fracture surfaces. Finally, the same approach was adopted to predict the fatigue life of commercially-resembling stents (Fig. 1), experimentally tested under multi-axial loading conditions, exploiting finite element simulations to assess the local cyclic stress-strain response in the failure regions. In both the studied applications, promising life predictions were obtained, demonstrating the role of fracture mechanics in explaining Ni-Ti struts fatigue failure.

Speaker’s bio

Alma is a PhD student in Structural, Seismic, and Geotechnical Engineering (38th cycle) at Politecnico di Milano. She has a Master of Science in Biomedical and Mechanical Engineering obtained in 2022 at Politecnico di Milano through a Double Degree Programme.Her current research mainly addresses experimental characterization and numerical modeling of the fatigue behavior of cardiovascular devices made by Nickel-Titanium shape memory alloys, focusing on the development of integrated predictive tools to assess fracture.
In her free time, Alma enjoys hiking and reading.

Dettagli

Data:
31 Ottobre 2023
Ora:
17:15 - 18:30
Categorie Evento:
,
Tag Evento:
, , , ,