Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Sempre attivi
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Nessun cookie da visualizzare.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Nessun cookie da visualizzare.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Nessun cookie da visualizzare.

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

Nessun cookie da visualizzare.

Dipartimento di
Ingegneria Civile e Ambientale

Caricamento Eventi

« Tutti gli Eventi

  • Questo evento è passato.

Advancements in Bayesian Neural Networks to Enhance Predictive Modeling for Civil Engineering Applications

22 Febbraio 2024 @ 11:00 - 14:00

Giovedì 22 febbraio alle ore 11.00 presso l’Aula Fassò (Edificio 4A – p.za Leonardo da Vinci, 32 – Milano) si terrà un seminario dal titolo: “Advancements in Bayesian Neural Networks to Enhance Predictive Modeling for Civil Engineering Applications“, tenuto dalla Prof.ssa Audrey Olivier (Sonny Astani Department of Civil and Environmental Engineering, University of Southern California).

Abstract

The conjuncton of data mining and physics-based modeling holds great potential to help design, monitor and optimize civil infrastructure systems. Machine learning (ML) tools can be used for a variety of civil engineering applications, from monitoring the health of structures using sensing data to building efficient surrogates to accelerate mechanistic modeling. The use of ML models for scientific and engineering applications presents unique challenges. Engineering datasets are often noisy, sparse and imbalanced, due to the inherent randomness of the underlying physical processes and constraints on data collection. ML predictors must also assimilate physics-based knowledge and intuitions to improve accuracy and generalization away from training data. Finally, ML models must embed robust prediction of uncertainties to improve trustworthiness for high-consequence decision-making. Framing ML training within a Bayesian inference framework allows for a robust quantification of both aleatory and epistemic uncertainties that arise from data inadequacies, integration of physics intuitions through prior design, and assessment of the model’s confidence in its predictions. However, due to the high-dimensionality and non-physicality of parameters that characterize typical ML models such as neural networks, application of Bayesian methods in this context raises several challenges, from prior and likelihood design to posterior inference. In this talk I will present some of the methods we have developed for approximate Bayesian learning of neural networks that integrate meaningful physics-driven priors. I will illustrate the benefits of these methods through a variety of example applications in civil engineering, from surrogate training to accelerate materials and structural modeling, contingency analysis in power grid systems, or ambulance travel time prediction in a dense urban network to help optimize emergency medical services.

Short Bio

Dr. Olivier holds a Diplôme d’Ingénieur from École Centrale de Nantes, France, and a Ph.D. in Civil Engineering and Engineering Mechanics from Columbia University, USA. She held a postdoctoral appointment at Johns Hopkins University before joining the Sonny Astani Department of Civil and Environmental Engineering at the University of Southern California as an Assistant Professor in Fall 2021. Dr. Olivier’s research aims to predict and monitor civil infrastructure systems behavior under uncertainty, by combining innovations in probabilistic data analytics and mechanistic modeling. Applications span various scales, from systems to structures to materials, and include development of adaptive Bayesian filters for identification of dynamical structural systems, probabilistic surrogate models to accelerate multi-scale materials simulations or Bayesian graph neural networks for contingency analysis of power grids.
Additional information available at: https://www.audreyolivier.com/; https://viterbi.usc.edu/directory/faculty/Olivier/Audrey .

Dettagli

Data:
22 Febbraio 2024
Ora:
11:00 - 14:00
Categoria Evento:
Tag Evento:
, , ,